A neural network classifier based on Dempster-Shafer theory

نویسنده

  • Thierry Denoeux
چکیده

A new adaptive pattern classifier based on the Dempster–Shafer theory of evidence is presented. This method uses reference patterns as items of evidence regarding the class membership of each input pattern under consideration. This evidence is represented by basic belief assignments (BBA’s) and pooled using the Dempster’s rule of combination. This procedure can be implemented in a multilayer neural network with specific architecture consisting of one input layer, two hidden layers and one output layer. The weight vector, the receptive field and the class membership of each prototype are determined by minimizing the mean squared differences between the classifier outputs and target values. After training, the classifier computes for each input vector a BBA that provides a description of the uncertainty pertaining to the class of the current pattern, given the available evidence. This information may be used to implement various decision rules allowing for ambiguous pattern rejection and novelty detection. The outputs of several classifiers may also be combined in a sensor fusion context, yielding decision procedures which are very robust to sensor failures or changes in the system environment. Experiments with simulated and real data demonstrate the excellent performance of this classification scheme as compared to existing statistical and neural network techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1

In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...

متن کامل

Assignment of Protein Sequence to Functional Family Using Neural Network & Dempster-Shafer Theory

Protein sequences classification is an important problem in molecular biology, and it has long been a goal for scientists and researchers. This paper describes an approach to data-driven discovery of sequence motifbased models using neural network classifier based on Dempster-Shafer Theory for assigning protein sequences to functional families. A training set of sequences with unknown functiona...

متن کامل

A NEW FUZZY MORPHOLOGY APPROACH BASED ON THE FUZZY-VALUED GENERALIZED DEMPSTER-SHAFER THEORY

In this paper, a new Fuzzy Morphology (FM) based on the GeneralizedDempster-Shafer Theory (GDST) is proposed. At first, in order to clarify the similarity ofdefinitions between Mathematical Morphology (MM) and Dempster-Shafer Theory (DST),dilation and erosion morphological operations are studied from a different viewpoint. Then,based on this similarity, a FM based on the GDST is proposed. Unlik...

متن کامل

A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence

This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...

متن کامل

Neural Network Combining Classifier Based on Dempster-Shafer Theory

In this paper, we propose an improved version of RBF network based on Evidence Theory (NNET) using one input layer and two hidden layers and one output layer, to improve classifier combination and recognition reliability in particular for automatic semantic-based video content indexing and retrieval. Many combination schemes have been proposed in the literature according to the type of informat...

متن کامل

A Study on Properties of Dempster-Shafer Theory to Probability Theory transformations

In this paper, five conditions that have been proposed by Cobb and Shenoy are studied for nine different mappings from the Dempster-Shafer theory to the probability theory. After comparing these mappings, one of the considerable results indicates that none of the mappings satisfies the condition of invariance with respect to the marginalization process. In more details, the main reason for this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Systems, Man, and Cybernetics, Part A

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2000